I note I ended the 2019 Annual Report article with the following statement ‘2020 looks to be an exceptionally busy year, with the Ethiopian project launching too, so there will be plenty to report on in next year’s journal.

Little did I realise that 12 months later I would have been restricted to overseeing what are now three major projects in Africa (Rwanda, Malawi and Ethiopia), plus the wider regional promotion of the Jersey breed across East African smallholder farming systems, almost entirely via a PC based communication system, known as Zoom! I am now also linked to more people in Africa on Whatsapp than I am in Jersey and, quite frankly, I would not be without it; though with the different time zones involved in our project work, receiving a stream of new messages, photos and videos when I should otherwise be asleep can be a little frustrating at times.

This 2020 Journal sees three Dairy for Development (D4D) articles reported on elsewhere, one for each of the major projects and all pieced together by new team member Sam Thomson, so this overview of the Society’s D4D work is as much an introduction to Sam, whilst also briefly reporting on the wider regional work.

Jersey born with strong family links to some of the greats of the local Jersey cattle breeding community, Sam joins the Society to help in delivering our growing group of projects in Dairy for Development. He previously worked in international development consultancy, working on a range of projects including agricultural research in the tropics. With Sam and I having just four days to get to know each other before Covid restrictions in the workplace meant that Sam was confined to working from home in St Helier for many weeks, I was grateful our skill sets and working practices interlinked so well.

Sam’s role involves a variety of work, from catching up with our in-country project partners on their progress, to developing data collection tools for use in the field. Sam is also responsible for proposal writing, and helping coordinate the design of the African Jersey Forum website, scheduled to be launched in 2021.

By taking the liberty of referring to the conveniently 3-legged milking stool analogy, the third leg of the D4D team, dairy consultant Dai Harvey, continues to play a pivotal role in our work. Whilst I know Covid travel restrictions have completely curtailed Dai’s travel options, to both engage with his own East African projects and spending time at home in Zambia with his wider family, the contribution Dai makes, from his home base in Oxfordshire, is second to none.

Outside of the three primary projects, we’ve recently been contracted by Jersey Overseas Aid to help them develop their Dairy for Development strategy, which will sit alongside their other two thematic areas of work, namely Financial Inclusion and Conservation Livelihoods. Further down the road we expect to assist JOA in developing a Theory of Change document and the accompanying Results Framework, where Sam’s expertise in this field of work will no doubt prove very useful.

Planning for the 2021 African Jersey Forum, which we were hoping would take place early in 2021 in Ethiopia now looks to be doubtful, so early plans are in place to hold a virtual event later in the year, once we better understand travel options, not just for us but the many African continent delegates we hope would attend.

David Hambrook
Head of Dairy for Development

A scene depicting the simple rural agriculture found in the Chacha area of Ethiopia, where our new project, working with in-country partner Project Mercy, is active.
Jersey Inka Nziza Phase II (January 2019 - December 2021)

January 2020 marked the beginning of the second year of the Society’s three-year Jersey Overseas Aid (JOA)-funded project in Rwanda - Jersey Inka Nziza (Jersey ‘Good Cow’) Phase II. JIN Phase II builds on the work of our first pilot project (JIN Phase I) which ran from 2017-2019 and which was, at the time of its inception, the first multi-year grant project ever supported by JOA. JIN Phase II is delivered along with two key implementing partners; Send a Cow (SAC), a UK-founded international charity which works to improve the lives of smallholder farmers across East and Southern Africa, as well as RAB (the Rwanda Agriculture and Animal Resources Development Board).

JIN Phase II is an ambitious project which aims to improve the management of dairy cows in six districts of northern, southern and eastern Rwanda through an increase in the adoption of Artificial Insemination (AI) services, greater use of Jersey genetics, and improved cattle feeding. The project works with approximately 12,000 beneficiary smallholder farmers and aims to improve their livelihoods by increasing incomes and strengthening food security and gender equality at the household level. Activities at this level - largely implemented by SACR (Send a Cow Rwanda) - include farmer training in improved fodder production, establishment of 300 farmer self-help groups to promote cooperation and improved gender and social inclusion, training support to 300 community animal health workers and ‘peer farmers’, as well as training and equipping farmers for improved animal management.

Areas of work largely coordinated by the Society include supporting RAB and the wider government of Rwanda in the establishment of a national cattle database suitable for the Rwandan context, with the technical support of Pan Livestock Services based at the University of Reading. We are also, in collaboration with the Centre for Tropical Livestock Genetics and Health (CTLGH), carrying out scientific research into the ideal traits for dairy cattle in smallholder farms in the tropics. A key part of this process is understanding the genetic traits of dairy cattle in Rwanda and the importance to local farmers of different traits in their cattle, such as resistance to disease and fertility performance.

Work under the project in 2020 was largely focused on ensuring that the activities originally planned for the calendar year could be implemented as near to as originally planned as possible in light of the major disruption caused by the COVID-19 pandemic. With David Hambrook having visited Rwanda in January 2020 to support in planning a major research exercise to be conducted in-country along with CTLGH in the early part of the year, it soon became apparent as of March that significant disruption to our original plans would require some creative solutions.

With representatives of the Society and CTLGH unable to travel even after the lifting of initial COVID-related restrictions in Rwanda around June 2020, an alternative plan for carrying out this research exercise had to be devised. Fortunately, SACR (with the support of RAB) were able to take on the challenge. Between July and September, the SACR team visited hundreds of farmers to collect genomic samples (taken from hair from the tail) of a cross-section of cattle, as well as to survey farmers on their preferred traits in dairy cattle. Care was taken to reduce the risk of COVID transmission including extra hygiene measures and the use of face coverings by the team. Over 2,000 cattle of various breeds have been sampled, including Jersey and Jersey-cross cows, and even the Inyambo ‘royal’ cattle, a variant of the famous horned Ankole cattle of Rwanda. Samples are currently undergoing lab analysis in the UK. Combined with data we plan to collect on milk production and other traits such as health, the findings will increase our understanding of the key traits of a successful dairy cow for a smallholder farmer in Rwanda, to guide future breeding and farmer training efforts.

While intermittent local lockdowns and travel restrictions have hampered some of the planned work with beneficiaries, there have still been admirable achievements in 2020. Much the same as here in Jersey, the local project team has adapted to the situation, reshuffling activity schedules and getting used to carrying out in-person work with extra social distancing and hygiene measures. The team have also been incorporating elements of COVID-response into their activities, including providing basic hygiene and sanitation training and equipment to beneficiaries. Approximately 2,800 farmers received training in fodder production, with 300 community animal health workers and peer farmers receiving refresher training in dairy cattle management. 82 model cowsheds and 81 model fodder multiplication sites have been constructed in villages throughout the project districts, to provide their local farmer groups with reference points for appropriate dairy cattle housing, as well as techniques for producing fodder for their animals in a more cost effective and environmentally friendly way.

Farmers taking part in a survey to determine their preferred traits in dairy cattle.

Collecting samples from Inyambo royal cattle.
The team also took the opportunity whilst carrying out the genomic sampling exercise to collect cattle data for inclusion in the electronic national livestock database we are rolling out as part of the project. This included basic data such as cattle breeds, sex, ages, and ear-tag numbers, to help RAB and other stakeholders better monitor the dairy cattle population. 14,019 dairy farmers and 2,472 individual animals were registered in the cattle database during project year 2, with plans to further populate the database as time goes on.

RAB information systems specialist Aphrodis Bagirubwira had travelled to the University of Reading just prior to the COVID lockdown to receive training and induction on the use of the database system with the Pan Livestock Services team. As of the end of 2020, the final steps in handing over ownership of the national database to the government of Rwanda were underway. The support of Dr James Hanks and the team at Pan Livestock Services, as well as the team at RAB (particularly Dr Felicien Shumbusho), has been integral to the commendable progress made in this area in the last year.

Another aspect of the project is increasing the uptake of AI and the use of Jersey semen. Five pallets of AI equipment together with three cans of 24,000 semen units and 100 Jersey embryos were shipped from Jersey and arrived in Rwanda during 2020, with 13,935 cattle artificially inseminated with Jersey semen during 2020, up from 10,306 in the first year of the project. A total of 2,382 calves sired through Jersey semen provided by the project have so far been identified and registered. It should be noted that this is only those Jersey-sired calves identified and registered in the database, which remains an ongoing process, and that this figure is likely to grow as we continue to record new animals, and new births.

SACR carried out a project review exercise early in 2020, to review outcomes for beneficiaries after just over a year of the project. While COVID-related restrictions meant that the team were able to survey fewer farmers than originally planned, results suggested that the project was already having a positive impact on people’s lives. 70% of the project beneficiaries surveyed were found fully food secure up from 43% at baseline, and average hungry months (months spent with inadequate food supplies to fill their needs) per year had also reduced from 2.0 months at baseline to 0.85 months. In 60% of households surveyed, men and women were also making joint decisions regarding their dairy enterprise, compared to 43% at baseline.

Our efforts in 2021 – the final year of the project - will be focused on ensuring that beneficiary-focused activities which have been hampered by COVID restrictions can be carried out in full, as well as on completing the handover of the national database. We will also be aiming to fill in gaps in our research into the most appropriate dairy cattle genetics for Rwanda by working with farmers to gather detailed data on productive characteristics, and other traits such as health and fertility, of dairy cattle of various genetic profiles. A detailed final project evaluation is also planned for the latter part of the year. As we come to the end of the project, we will be working closely with RAB, SAC and JOA in order to refine plans for future work in the Rwandan dairy sector in order that we can continue to benefit the lives of the neediest people in Rwanda while maximising ongoing government ownership and ensuring sustainability of the impact achieved.
Malawi Dairy Growth (MDG) Project (April 2018 - March 2021)

The Society’s involvement in Malawi came about following an introduction and recommendation from Dai Harvey, our D4D Technical Advisor. Following a reconnaissance visit by David Hambrook during the summer of 2017, a successful application to Jersey Overseas Aid (JOA) for funding support was made that autumn, with a 3-year project launching in April 2018.

With historic Scottish connections, Malawi is a small, landlocked and densely populated country with a population of around 17.5 million. Though relatively peaceful in recent decades, Malawi remains at a low level of development, ranking 172nd of 189 countries in the 2019 Human Development Index. With one of the least urbanised populations in the world, agriculture is Malawi’s primary employer but productivity is poor with most farmers locked in subsistence or small-scale farming. There are very limited opportunities for non-farm income generation, particularly in rural areas. Local consumption of dairy products is low by regional averages, but continues to grow as populations become more urbanised and incomes increase, and there is a growing dairy sector with a long history of local milk production.

Project partner SHMPA (the Shire Highlands Milk Producers’ Association) has been the main actor in smallholder dairy development in Malawi since its formation in 1985. SHMPA has been managed for some 20 years by Brian Lewis, a New Zealander with a dairy farming background, along with a team of dedicated local project officers and field technicians. The association acts as a cooperative of smallholder dairy farmers active in the southern region, the main milk producing area of Malawi, who collectively produce over 90% of milk sold nationally. Membership consists entirely of smallholder farmers selling their milk through MBGs (Milk Bulking Groups), over 50% of whom are female. Through their membership of SHMPA, farmers gain access to benefits including technical training and subsidised farm inputs such as AI (Artificial Insemination) services and cattle feed.

With the support and oversight of the RJAHS, the project has targeted a range of outcomes including improved economic viability and dairy cattle management among SHMPA farmers, improved extension and service delivery by SHMPA, and support to vulnerable women farmers through an effective heifer loan scheme (see more below). SHMPA membership has grown from around 6,000 at the start of the project to over 10,000 in just under three years, which is testament to the positive impacts for their farmers, and is reflected in the figure of over 7,000 farmers having participated in training sessions after two years of the project with an original target of 4,300 for the period.

Much the same as with our work in Rwanda and Ethiopia, a key focus of the MDG project has been not only building the capacity of farmers, but that of the technicians and field officers who provide services such as AI, farmer training, and animal health checks. SHMPA’s 38 field technicians have been trained in improved AI practices and record-keeping and have been provided with high quality equipment which can stand up to the rigours of use in the Malawian climate. Support in developing training aids has been provided by Dr Peter Edmondson of Udderwise UK. All of SHMPA’s AI services are now being provided with Jersey Island semen supplied through the project, with 2,584 farmers provided with AI services between March 2019 and March 2020.

One of the positive outcomes already observed has been a reduction in average calving interval in SHMPA-monitored cattle. Genetic gains, and improved animal health and reproductive management stand to improve fertility and decrease the length of time for which cows are unproductive between calvings. Our original target was to reduce the average calving interval by 5% (from 20.4 to 19.4 months) by the end of the second project year (March 2020). The 11% reduction achieved, down to 18.2 months on average, has greatly exceeded this target. The estimated cost per day open (days for which a cow is not pregnant, beyond the ideal date for next breeding) to a farmer is $2 per day (factoring in the value of the calf) per cow. Therefore, a reduction of approximately 60 days in calving interval has the potential to save an individual farmer approximately $120 a year per cow, or to increase the annual income (as well as milk volume) available to farmers by approximately 22%. Increasing the length of time during the year that farmers’ cows are in milk is a significant step towards improving both food security and income.
The project has not been without its challenges, not least the departure of original project partner VSO (Voluntary Service Overseas), with the mutual consent of all parties, after one year. The last year has of course been impacted by COVID, with major job losses and economic turmoil increasing the vulnerability of Malawi’s rural population. Fortunately, as of the end of 2020, COVID’s impact on the project has not been as catastrophic as first feared, in part thanks to the Malawian government’s decision to designate SHMPA’s work as ‘essential services’, which has helped minimise disruption in services to farmers. While the future impact of the pandemic on milk prices is unpredictable, reduced export of maize bran (a popular cattle feed) due to tightened border controls has had the unexpected positive impact of reducing the seasonal inflation in maize bran prices which usually places strain on farmers in feeding their cattle.

Another area which has been particularly challenging has been conducting meaningful political engagement. Progress in positively influencing government policies related to the dairy sector has been limited, due in a major part to political instability in the country, with Malawi seeing four different Ministers of Agriculture between 2019 and 2020 alone. The challenges in this area, which was chiefly the responsibility of original project partner VSO, was a factor in the decision for their departure from the project delivery consortium. Large meetings and in-person gatherings have also been restricted by COVID, further reducing the chances for SHMPA to voice the concerns of their smallholder farmers on the national stage. SHMPA continues to advocate at national level and enjoys a close working relationship with the national milk producers’ association and major dairy processors, but influencing political decisions affecting the sector is likely to remain a considerable challenge.

While there have been challenges at the political level, the successes of the project in improving the lives of poor farmers should not be understated. As in much of the developing world, female dairy farmers in Malawi face particular barriers to improving their incomes and productivity, relative to their male counterparts. These include a greater burden of childcare and other domestic chores and difficulty accessing vital resources such as cattle feed and monetary loans. Matrilineal inheritance customs are also common in the SHMPA region, with inheritance of land and property passing down through the mother’s side. Sons leave the farm to marry elsewhere. If a mother passes away, the father will often leave to seek a new partner and his children will be cared for by female relatives of the mother – typically aunts and grandmothers. Also, with high rates of HIV/AIDS related sickness and deaths there are a lot of orphaned children living with their grandmothers. This can leave women heads of households with significant financial responsibility in feeding and schooling children, and limited means to generate income, so the impact of some cash income is significant.

The project has sought to address some of these challenges through SHMPA’s ‘M’ (milk) loan scheme, which roughly translates as ‘Milkwomen’ (mkaka = milk, mkazi = woman) in Chichewa, the local language. This scheme specifically supports vulnerable female-headed households without other major income sources by providing them with an in-calf heifer, and the training and basic equipment needed to care for and collect milk from their new dairy cow. New farmers are selected by their local SHMPA committees, who determine the neediest individuals, and once selected, SHMPA’s field team provides ongoing training and monitoring support to these farmers to help as many as possible to succeed in establishing a viable dairy enterprise.

Over the course of nearly three years, the project has so far supported 820 loan scheme farmers (well over our target of 450), whose feedback confirms a significant impact on their economic and food security. As Mukanena Zimba (one of SHMPA’s project officers) writes… “One of the best things is seeing how farmers’ lives have really changed since getting a cow. Knowing that you played a part in that change is very rewarding.”

As the MDG project draws to a close, the RIJHC and SHMPA team have jointly reviewed our progress, determining some big successes (as outlined) and other areas where we can further improve. A detailed final evaluation exercise is planned for March 2021, and while it is unlikely that the Jersey-based team will be able to travel to Malawi and review our progress in person, a remotely coordinated evaluation will be carried out to collect valuable data to provide lessons for the future.

This will be a particularly valuable exercise following JOA’s approval in November 2020 of a three-year extension of the project. MDG Phase II will continue to work with SHMPA in the same region of Malawi, maintaining a focus on the most vulnerable parts of the population. It will, however, also seek to build on the successes of Phase I by further strengthening the services provided to farmers (including through improved use of data and technology), expanding our work on genotyping and research, increasing the focus on environmental and economic sustainability, and enhancing knowledge sharing and coordination with our other projects. SHMPA have secured external funding to support the long-term operation of their loan scheme, as well as focused work on fodder production. We look forward to formally publicising the final results of Phase I, and keeping our membership informed on the progress of Phase II.
2020 saw the expansion of our Dairy for Development project portfolio to a new country – Ethiopia. Working with local partner Project Mercy, the aim of this new project is to transform dairy cattle breeding as well as dairy production in an area of the central Amhara region over a period of 37 months (2020 - 2023). Our activities intend to promote and integrate Jersey breed genetics into smallholder farming practices in the region, and to increase the quality and quantity of milk produced, consumed, and sold. Through creating awareness of the Jersey breed, farmer and extension worker training, and a community breeding programme, we hope to increase the incomes and food security prospects of approximately 4,500 smallholder farmers and their families. Data gathered through this project will also support the Society’s regional work with the Centre for Tropical Livestock Genetics and Health (CTLGH) and Pan Livestock Services, building knowledge on the most desirable cattle traits for smallholder dairy farmers in the wider East African region.

Originated in the United States in the late 1970s to provide remote relief to refugees in Africa, Project Mercy established a permanent presence in Yetebon, Ethiopia in 1993 to provide a small-scale education and health programme. Over the years, Project Mercy’s remit has expanded from a faith-led humanitarian relief provider to a community development organisation with multiple hubs providing programmes in education, health care and rural development. This has included establishing a cattle breeding farm at ChaCha – a small town approximately 120km northeast of Addis Ababa – which has already provided over 130 Jersey-sired heifers to families in need. Through contacts established via our existing work in regional dairy development, the Society had identified Project Mercy as a potential partner and carried out a scoping visit to ChaCha in late 2018. With JOA looking to expand their Dairy for Development portfolio into Ethiopia, there was a clear opportunity to develop a new project, which was designed jointly between the Society and Project Mercy over the course of 2019 and approved by JOA for launch in early 2020.

Originally formed in the United States in the late 1970s to provide remote relief to refugees in Africa, Project Mercy established a permanent presence in Yetebon, Ethiopia in 1993 to provide a small-scale education and health programme. Over the years, Project Mercy’s remit has expanded from a faith-led humanitarian relief provider to a community development organisation with multiple hubs providing programmes in education, health care and rural development. This has included establishing a cattle breeding farm at ChaCha – a small town approximately 120km northeast of Addis Ababa – which has already provided over 130 Jersey-sired heifers to families in need. Through contacts established via our existing work in regional dairy development, the Society had identified Project Mercy as a potential partner and carried out a scoping visit to ChaCha in late 2018. With JOA looking to expand their Dairy for Development portfolio into Ethiopia, there was a clear opportunity to develop a new project, which was designed jointly between the Society and Project Mercy over the course of 2019 and approved by JOA for launch in early 2020.

Project Mercy Director, Bete Demek, reporting from the field

The project came up against a significant hurdle before it had even begun in the form of COVID, which resulted in a decision to delay the original planned start of March to July. This proved to be a sensible decision with the impacts of COVID including declaration of a national state of emergency and restrictions on regional travel and group gatherings. Disruption continued following the new start date but we were fortunately able to begin project activities that did not require significant travel or any major group gatherings from July onwards.

This included supporting Project Mercy to transfer their ChaCha farm cattle data, which was largely paper-based, into an electronic form, with the support of our long-term partner Pan Livestock Services, based out of the University of Reading. Preliminary analysis of ChaCha cattle data identified fertility issues in the breeding herd, with low conception rates and lengthy calving intervals. This was an immediate priority to address, given the importance of the farm as the main breeding facility for cross-bred calves and an expected increase in demand. The RJAHS connected Project Mercy with dairy consultant Dr Peter Edmondson in late September. Over the period of October to November Dr Edmondson of UdderWise UK had several remote meetings with the team and reviewed available data to provide detailed analysis of the ChaCha fertility issues. The Project Mercy team also met with numerous local experts and organisations to discuss potential issues and solutions.

Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

Dr Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

Dr Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

Dr Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

Dr Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

Dr Edmondson’s analysis included aspects such as nutrition, feeding and animal management, and breeding practice (include heat detection and timings). Having electronic data has proved valuable in this regard, allowing the team to analyse data chronologically and graphically and identify potential issues. Dr Edmondson was able to provide recommendations, including for improved Artificial Insemination (AI) practices, heat detection and nutrition. A revised breeding plan is currently being finalised which is set to include a shift to seasonal ‘block’ calving of cattle, timed to coincide with climate and feed availability for the best chances of success.

As soon as was practical, the team arranged a project launch meeting with local government stakeholders including officials from both the Ministry of Agriculture and Ministry of Finance, livestock experts, Kebele (village) administrators, and livestock development agents from all 13 Kebeles targeted in the programme. A total of 90 individuals participated in the meeting which took place in early September, helping to give the key stakeholders an outline of our planned activities, and encourage their buy-in and support for the project.

The RJAHS management team have also been getting to grips with overseeing a project in a new country and the challenges this brings. Some of these are much the same as in our other projects in the region – challenges with government regulations around imports and exports, infrastructural issues such as reliable access to liquid nitrogen (in which deep frozen semen is stored), and communicating with teams in the field – whereas others have been unique to the new context. Aside from issues caused by COVID, Ethiopia has undergone two major periods of civil unrest in the last year, including conflict in the northern region of Tigray. The situation in the area we are working in has remained stable, but knock-on effects such as travel restrictions and internet shut-downs have made an already challenging launch period tougher.
However, with initial teething problems largely resolved, the project is now firmly underway. The team have begun a sampling exercise, collecting genomic data on nearly 400 local and crossbred dairy cattle for genomic testing in the UK, to provide valuable learning for our local breeding strategy, as well as to feed into our wider work on developing an East African Dairy Profit Index. Working with the Ethiopian National Animal Genetics Improvement Institute (NAGII) – who are a key partner in the project – Project Mercy have also identified the first batch of a planned total of 50 new AI technicians. As this report is being compiled in 2021, they are now being trained and equipped to provide breeding services (using project-supplied Jersey-Island semen) for the project beneficiaries to improve the genetic characteristics of dairy cattle in the project area and increase milk production at the household level.

During November and December, the Project Mercy team were concluding a major baseline data collection exercise, which surveyed over 250 farmers in the project area to gather information on their current livestock resources and practices, as well as the challenges they face in improving their productivity. Respondents were also surveyed on their awareness of the Jersey breed and its traits, and their access to and requirement for specific services. Surveys were designed jointly with Project Mercy for local relevance, and made use of electronic data collection software with offline functionality, which allowed research to be carried out in remote areas with poor connectivity and the data uploaded later for review. The findings of this baseline will provide a valuable benchmark for measuring our progress, as well as guiding the interventions provided to the project beneficiaries.

The key upcoming work in 2021 includes completion of the AI training course and induction of the AI technicians into practical work, design and roll out of farmer training initiatives, and work with other key stakeholders such as policy-makers and government livestock technicians to enhance their awareness of the Jersey breed and appropriate breeding strategies. An African Jersey Forum event was originally scheduled to take place in Ethiopia in 2021, but with the challenges and risks of coordinating a major public event with participants travelling in from all over the world, it was recently decided that a virtual event would replace the in-person one. Further planning for the focus, schedule and timing of this event will take place in early 2021, with the event to be held later in the year. Details will be publicised through the Society’s social media and other channels for those based in Jersey who may wish to follow our D4D work more closely.